Diameter vulnerability of GC graphs
نویسندگان
چکیده
Concern over fault tolerance in the design of interconnection networks has stimulated interest in finding large graphs with maximum degree ∆ and diameter D such that the subgraphs obtained by deleting any set of s vertices have diameter at most D′, this value being close to D or even equal to it. This is the so-called (∆, D, D′, s)-problem. The purpose of this work has been to study this problem for s = 1 on some families of generalized compound graphs. These graphs were designed by one of the authors in [15] as a contribution to the (∆, D)-problem, that is, to the construction of graphs having maximum degree ∆, diameter D and an order large enough. When approaching the mentioned problem in these graphs, we realized that each of them could be redefined as a compound graph, the main graph being the underlying graph of a certain iterated line digraph. In fact, this new characterization has been the key point to prove in a suitable way that the graphs belonging to these families are solutions to the (∆, D, D + 1, 1)-problem. MSC: 05C40, 05C12, 05C20
منابع مشابه
Diameter vulnerability of graphs by edge deletion
Let f (t, k) be the maximum diameter of graphs obtained by deleting t edges from a (t+1)-edge-connected graph with diameter k. This paper shows 4 √ 2t−6 < f (t, 3) ≤ max{59, 5 √ 2t+7} for t ≥ 4, which corrects an improper result in [C. Peyrat, Diameter vulnerability of graphs, Discrete Appl. Math. 9 (3) (1984) 245–250] and also determines f (2, k) = 3k − 1 and f (3, k) = 4k − 2 for k ≥ 3. c © 2...
متن کاملTenacity and some other Parameters of Interval Graphs can be computed in polynomial time
In general, computation of graph vulnerability parameters is NP-complete. In past, some algorithms were introduced to prove that computation of toughness, scattering number, integrity and weighted integrity parameters of interval graphs are polynomial. In this paper, two different vulnerability parameters of graphs, tenacity and rupture degree are defined. In general, computing the tenacity o...
متن کاملTenacity and rupture degree parameters for trapezoid graphs
Reliability of networks is an important issue in the field of graph and network. Computation of network vulnerability parameters is NP-complete for popular network topologies such as tree, Mesh, Cube, etc.In this paper, we will show that the tenacity and rupture degree parameters for trapezoid graphs can be computed in polynomial time.
متن کاملA generalization of zero-divisor graphs
In this paper, we introduce a family of graphs which is a generalization of zero-divisor graphs and compute an upper-bound for the diameter of such graphs. We also investigate their cycles and cores
متن کاملOn Vulnerability Measures of Networks
As links and nodes of interconnection networks are exposed to failures, one of the most important features of a practical networks design is fault tolerance. Vulnerability measures of communication networks are discussed including the connectivities, fault diameters, and measures based on HosoyaWiener polynomial. An upper bound for the edge fault diameter of product graphs is proved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Applied Mathematics
دوره 130 شماره
صفحات -
تاریخ انتشار 2003